COVID-19 cases and hospital admissions have been rising in Michigan. We estimate an effective reproductive number of 1.36 as of March 25. We consider 4 possible strategies using the LEMMA model:
1. Maintain the status quo.
2. Vaccine Surge: Double the current vaccine allocation for two weeks.
3. Reopening Pause: Reenact restrictions that reduce the effective contact rate by 30% for two weeks.
4. Both Vaccine Surge and Reopening Pause.

With regard to the reopening pause, this might be possible by closing indoor dining, indoor bars and indoor gyms for two weeks. For comparison, we estimate that restrictions and behavior change in March 2020 reduced the effective contact rate by 67%.

Relative to the status quo, we estimate that the combined Vaccine Surge and Reopening Pause could reduce hospital admissions by 23000 and deaths by 2500 from April 3 to July 1. The Vaccine Surge alone could reduce hospital admissions by 10000 and deaths by 1200. The Reopening Pause alone could reduce hospital admissions by 16000 and deaths by 1700.

library(LEMMA)
no_change <- CredibilityIntervalFromExcel("MI.xlsx")
pause <- CredibilityIntervalFromExcel("MI_pause.xlsx")
double <- CredibilityIntervalFromExcel("MI_double.xlsx")
pause_double <- CredibilityIntervalFromExcel("MI_pause_double.xlsx")

Key Uncertainty - Seroprevalence

We are not aware of good estimates of current seroprevalence in Michigan - if you have one please let us know! We use the CDC seroprevalence estimate prior to vaccine rollout. After vaccine rollout begins, interpretation of the CDC seroprevalence estimate is unclear (“Testing platforms differ between jurisdictions, with laboratories using a mix of anti-spike (i.e., seen with vaccine and/or infection) and anti-nucleocapsid (i.e., only with infection), some estimates will reflect receipt of vaccines.”).
The CDC estimates imply a case detection rate of around 40%, which seems high, but we used a prior of 35% for our base case. This would mean that there are many people without natural immunity and that the benefits from a vaccine surge and/or reopening pause would be large. In the Sensitivity Analysis section, we also used a lower prior of 25% case detection rate, implying a larger number with natural immunity and thus reductions in admissions and deaths that are roughly 40% as large as above.

Assumptions

As our base case, we assume the UK variant currently makes up 50% of the circulating SARS-COV2, grows at 3% per day and is 70% more transmissable than wild-type SARS-COV2. These values are considered fixed by LEMMA but we vary these assumptions in the Sensitivity Analysis. Other fixed values regarding variants and vaccine efficacy are on the Variants sheet of the Excel input. Paramters on the Parameters with Distributions (e.g. latent period, hospitalization rate, etc) are treated as parametersw with prior distributions to be estimated. Their posterior modes can be found in the Excel output file. See the main LEMMA page for more details on the LEMMA model and how to install and use it.

Sensitivity Analysis

We examined the effect of high or low seroprevalence (prior on case detection rate = 25% or 35%), increased transmisability for the UK variant of 50% and 70%, current UK variant proportion 30%, 50%, 70%, and daily growth_UK 2%, 3%, 4%.
Code to reproduce this sensitivity analysis is below.

##     double_vaccines pause low_seroprev trans_mult_UK cur_UK growth_UK admits_averted deaths_averted
## 1              TRUE  TRUE         TRUE           1.5    0.3      1.02      16270.265      1664.7633
## 2              TRUE FALSE         TRUE           1.5    0.3      1.02       6506.436       742.6581
## 3             FALSE  TRUE         TRUE           1.5    0.3      1.02      12174.818      1222.3785
## 4             FALSE FALSE         TRUE           1.5    0.3      1.02          0.000         0.0000
## 5              TRUE  TRUE        FALSE           1.5    0.3      1.02      20144.861      2081.2286
## 6              TRUE FALSE        FALSE           1.5    0.3      1.02       9230.665      1052.8113
## 7             FALSE  TRUE        FALSE           1.5    0.3      1.02      12687.479      1290.7697
## 8             FALSE FALSE        FALSE           1.5    0.3      1.02          0.000         0.0000
## 9              TRUE  TRUE         TRUE           1.7    0.3      1.02      16796.837      1715.7964
## 10             TRUE FALSE         TRUE           1.7    0.3      1.02       6817.303       771.0565
## 11            FALSE  TRUE         TRUE           1.7    0.3      1.02      12496.894      1258.0746
## 12            FALSE FALSE         TRUE           1.7    0.3      1.02          0.000         0.0000
## 13             TRUE  TRUE        FALSE           1.7    0.3      1.02       9102.254       966.3809
## 14             TRUE FALSE        FALSE           1.7    0.3      1.02       2994.673       374.0657
## 15            FALSE  TRUE        FALSE           1.7    0.3      1.02       6954.969       719.8374
## 16            FALSE FALSE        FALSE           1.7    0.3      1.02          0.000         0.0000
## 17             TRUE  TRUE         TRUE           1.5    0.5      1.02      19390.030      2031.8101
## 18             TRUE FALSE         TRUE           1.5    0.5      1.02       7885.738       917.7870
## 19            FALSE  TRUE         TRUE           1.5    0.5      1.02      14326.753      1478.0224
## 20            FALSE FALSE         TRUE           1.5    0.5      1.02          0.000         0.0000
## 21             TRUE  TRUE        FALSE           1.5    0.5      1.02      20884.973      2219.2189
## 22             TRUE FALSE        FALSE           1.5    0.5      1.02       9429.427      1112.5222
## 23            FALSE  TRUE        FALSE           1.5    0.5      1.02      13194.550      1379.2518
## 24            FALSE FALSE        FALSE           1.5    0.5      1.02          0.000         0.0000
## 25             TRUE  TRUE         TRUE           1.7    0.5      1.02      19566.053      2049.1190
## 26             TRUE FALSE         TRUE           1.7    0.5      1.02       8168.375       948.3350
## 27            FALSE  TRUE         TRUE           1.7    0.5      1.02      13982.514      1442.5420
## 28            FALSE FALSE         TRUE           1.7    0.5      1.02          0.000         0.0000
## 29             TRUE  TRUE        FALSE           1.7    0.5      1.02      20467.646      2171.4555
## 30             TRUE FALSE        FALSE           1.7    0.5      1.02       9233.050      1086.6878
## 31            FALSE  TRUE        FALSE           1.7    0.5      1.02      12934.796      1351.2689
## 32            FALSE FALSE        FALSE           1.7    0.5      1.02          0.000         0.0000
## 33             TRUE  TRUE         TRUE           1.5    0.7      1.02      19313.446      2059.1810
## 34             TRUE FALSE         TRUE           1.5    0.7      1.02       7739.874       923.6501
## 35            FALSE  TRUE         TRUE           1.5    0.7      1.02      14190.693      1485.4792
## 36            FALSE FALSE         TRUE           1.5    0.7      1.02          0.000         0.0000
## 37             TRUE  TRUE        FALSE           1.5    0.7      1.02       9091.565      1016.8031
## 38             TRUE FALSE        FALSE           1.5    0.7      1.02       2742.080       371.7645
## 39            FALSE  TRUE        FALSE           1.5    0.7      1.02       7030.398       762.2984
## 40            FALSE FALSE        FALSE           1.5    0.7      1.02          0.000         0.0000
## 41             TRUE  TRUE         TRUE           1.7    0.7      1.02      25234.667      2671.3196
## 42             TRUE FALSE         TRUE           1.7    0.7      1.02      10978.640      1280.3306
## 43            FALSE  TRUE         TRUE           1.7    0.7      1.02      17367.615      1816.3734
## 44            FALSE FALSE         TRUE           1.7    0.7      1.02          0.000         0.0000
## 45             TRUE  TRUE        FALSE           1.7    0.7      1.02       9318.940      1043.6781
## 46             TRUE FALSE        FALSE           1.7    0.7      1.02       2952.923       398.7821
## 47            FALSE  TRUE        FALSE           1.7    0.7      1.02       6990.214       758.1892
## 48            FALSE FALSE        FALSE           1.7    0.7      1.02          0.000         0.0000
## 49             TRUE  TRUE         TRUE           1.5    0.3      1.03      19322.801      1995.1369
## 50             TRUE FALSE         TRUE           1.5    0.3      1.03       8216.540       934.1551
## 51            FALSE  TRUE         TRUE           1.5    0.3      1.03      13825.854      1408.9721
## 52            FALSE FALSE         TRUE           1.5    0.3      1.03          0.000         0.0000
## 53             TRUE  TRUE        FALSE           1.5    0.3      1.03      10444.417      1121.0880
## 54             TRUE FALSE        FALSE           1.5    0.3      1.03       3613.289       451.5280
## 55            FALSE  TRUE        FALSE           1.5    0.3      1.03       7790.566       817.1054
## 56            FALSE FALSE        FALSE           1.5    0.3      1.03          0.000         0.0000
## 57             TRUE  TRUE         TRUE           1.7    0.3      1.03      20453.251      2113.6259
## 58             TRUE FALSE         TRUE           1.7    0.3      1.03       9020.766      1019.8623
## 59            FALSE  TRUE         TRUE           1.7    0.3      1.03      14019.224      1436.2591
## 60            FALSE FALSE         TRUE           1.7    0.3      1.03          0.000         0.0000
## 61             TRUE  TRUE        FALSE           1.7    0.3      1.03      11114.782      1195.0589
## 62             TRUE FALSE        FALSE           1.7    0.3      1.03       4025.689       498.0253
## 63            FALSE  TRUE        FALSE           1.7    0.3      1.03       7972.485       842.3147
## 64            FALSE FALSE        FALSE           1.7    0.3      1.03          0.000         0.0000
## 65             TRUE  TRUE         TRUE           1.5    0.5      1.03      20693.371      2201.0784
## 66             TRUE FALSE         TRUE           1.5    0.5      1.03       8578.982      1010.8762
## 67            FALSE  TRUE         TRUE           1.5    0.5      1.03      14971.227      1571.3585
## 68            FALSE FALSE         TRUE           1.5    0.5      1.03          0.000         0.0000
## 69             TRUE  TRUE        FALSE           1.5    0.5      1.03      23796.414      2568.1252
## 70             TRUE FALSE        FALSE           1.5    0.5      1.03      11268.696      1336.2363
## 71            FALSE  TRUE        FALSE           1.5    0.5      1.03      14277.594      1525.9401
## 72            FALSE FALSE        FALSE           1.5    0.5      1.03          0.000         0.0000
## 73             TRUE  TRUE         TRUE           1.7    0.5      1.03      23278.189      2477.4703
## 74             TRUE FALSE         TRUE           1.7    0.5      1.03      10107.882      1182.3380
## 75            FALSE  TRUE         TRUE           1.7    0.5      1.03      15997.186      1689.4000
## 76            FALSE FALSE         TRUE           1.7    0.5      1.03          0.000         0.0000
## 77             TRUE  TRUE        FALSE           1.7    0.5      1.03       9849.542      1097.7545
## 78             TRUE FALSE        FALSE           1.7    0.5      1.03       3266.581       431.0080
## 79            FALSE  TRUE        FALSE           1.7    0.5      1.03       7207.326       783.5507
## 80            FALSE FALSE        FALSE           1.7    0.5      1.03          0.000         0.0000
## 81             TRUE  TRUE         TRUE           1.5    0.7      1.03      21925.417      2378.9992
## 82             TRUE FALSE         TRUE           1.5    0.7      1.03       8937.670      1081.7278
## 83            FALSE  TRUE         TRUE           1.5    0.7      1.03      15802.525      1689.3898
## 84            FALSE FALSE         TRUE           1.5    0.7      1.03          0.000         0.0000
## 85             TRUE  TRUE        FALSE           1.5    0.7      1.03      24228.501      2663.7430
## 86             TRUE FALSE        FALSE           1.5    0.7      1.03      10938.059      1336.9225
## 87            FALSE  TRUE        FALSE           1.5    0.7      1.03      15147.467      1642.3824
## 88            FALSE FALSE        FALSE           1.5    0.7      1.03          0.000         0.0000
## 89             TRUE  TRUE         TRUE           1.7    0.7      1.03      28431.461      3070.4670
## 90             TRUE FALSE         TRUE           1.7    0.7      1.03      12827.941      1521.2818
## 91            FALSE  TRUE         TRUE           1.7    0.7      1.03      18588.124      1989.4587
## 92            FALSE FALSE         TRUE           1.7    0.7      1.03          0.000         0.0000
## 93             TRUE  TRUE        FALSE           1.7    0.7      1.03       8027.848       922.5805
## 94             TRUE FALSE        FALSE           1.7    0.7      1.03       2191.507       311.6886
## 95            FALSE  TRUE        FALSE           1.7    0.7      1.03       6268.298       699.0355
## 96            FALSE FALSE        FALSE           1.7    0.7      1.03          0.000         0.0000
## 97             TRUE  TRUE         TRUE           1.5    0.3      1.04      22222.730      2327.0762
## 98             TRUE FALSE         TRUE           1.5    0.3      1.04       9806.125      1120.8668
## 99            FALSE  TRUE         TRUE           1.5    0.3      1.04      15438.511      1605.9976
## 100           FALSE FALSE         TRUE           1.5    0.3      1.04          0.000         0.0000
## 101            TRUE  TRUE        FALSE           1.5    0.3      1.04       8248.353       908.9634
## 102            TRUE FALSE        FALSE           1.5    0.3      1.04       2624.043       345.3211
## 103           FALSE  TRUE        FALSE           1.5    0.3      1.04       6119.581       656.9107
## 104           FALSE FALSE        FALSE           1.5    0.3      1.04          0.000         0.0000
## 105            TRUE  TRUE         TRUE           1.7    0.3      1.04      23385.549      2445.1531
## 106            TRUE FALSE         TRUE           1.7    0.3      1.04      10830.039      1229.3050
## 107           FALSE  TRUE         TRUE           1.7    0.3      1.04      15063.558      1573.2249
## 108           FALSE FALSE         TRUE           1.7    0.3      1.04          0.000         0.0000
## 109            TRUE  TRUE        FALSE           1.7    0.3      1.04      13414.277      1451.2882
## 110            TRUE FALSE        FALSE           1.7    0.3      1.04       5296.279       646.2177
## 111           FALSE  TRUE        FALSE           1.7    0.3      1.04       9103.238       976.0162
## 112           FALSE FALSE        FALSE           1.7    0.3      1.04          0.000         0.0000
## 113            TRUE  TRUE         TRUE           1.5    0.5      1.04      22356.780      2401.2915
## 114            TRUE FALSE         TRUE           1.5    0.5      1.04       9633.200      1143.8481
## 115           FALSE  TRUE         TRUE           1.5    0.5      1.04      15473.692      1639.8717
## 116           FALSE FALSE         TRUE           1.5    0.5      1.04          0.000         0.0000
## 117            TRUE  TRUE        FALSE           1.5    0.5      1.04      11200.203      1254.7910
## 118            TRUE FALSE        FALSE           1.5    0.5      1.04       3865.850       508.7319
## 119           FALSE  TRUE        FALSE           1.5    0.5      1.04       8116.609       887.3571
## 120           FALSE FALSE        FALSE           1.5    0.5      1.04          0.000         0.0000
## 121            TRUE  TRUE         TRUE           1.7    0.5      1.04      24830.551      2674.6070
## 122            TRUE FALSE         TRUE           1.7    0.5      1.04      11006.389      1300.8749
## 123           FALSE  TRUE         TRUE           1.7    0.5      1.04      16533.701      1771.9412
## 124           FALSE FALSE         TRUE           1.7    0.5      1.04          0.000         0.0000
## 125            TRUE  TRUE        FALSE           1.7    0.5      1.04      25293.133      2792.1630
## 126            TRUE FALSE        FALSE           1.7    0.5      1.04      12699.106      1530.4792
## 127           FALSE  TRUE        FALSE           1.7    0.5      1.04      13887.940      1528.9234
## 128           FALSE FALSE        FALSE           1.7    0.5      1.04          0.000         0.0000
## 129            TRUE  TRUE         TRUE           1.5    0.7      1.04      23461.473      2568.2089
## 130            TRUE FALSE         TRUE           1.5    0.7      1.04       9624.371      1172.3989
## 131           FALSE  TRUE         TRUE           1.5    0.7      1.04      16847.133      1820.6976
## 132           FALSE FALSE         TRUE           1.5    0.7      1.04          0.000         0.0000
## 133            TRUE  TRUE        FALSE           1.5    0.7      1.04       9983.067      1148.1491
## 134            TRUE FALSE        FALSE           1.5    0.7      1.04       3006.574       418.5837
## 135           FALSE  TRUE        FALSE           1.5    0.7      1.04       7600.870       850.0265
## 136           FALSE FALSE        FALSE           1.5    0.7      1.04          0.000         0.0000
## 137            TRUE  TRUE         TRUE           1.7    0.7      1.04      24661.067      2699.2801
## 138            TRUE FALSE         TRUE           1.7    0.7      1.04      10407.605      1263.8262
## 139           FALSE  TRUE         TRUE           1.7    0.7      1.04      17086.169      1850.5918
## 140           FALSE FALSE         TRUE           1.7    0.7      1.04          0.000         0.0000
## 141            TRUE  TRUE        FALSE           1.7    0.7      1.04       8462.806       981.7534
## 142            TRUE FALSE        FALSE           1.7    0.7      1.04       2334.124       333.7354
## 143           FALSE  TRUE        FALSE           1.7    0.7      1.04       6550.384       738.8318
## 144           FALSE FALSE        FALSE           1.7    0.7      1.04          0.000         0.0000
Scenario <- function(pause, double_vaccines, low_seroprev, trans_mult_UK, cur_UK, growth_UK) {
  sheets <- LEMMA:::ReadInputs("MI.xlsx")
  pause_date <- as.Date("2021/4/3")
  if (pause) {
    sheets$Interventions <- rbind(sheets$Interventions,
                                  data.table(mu_t_inter = c(pause_date, pause_date + 14),
                                             sigma_t_inter = 0.1,
                                             mu_beta_inter = c(0.7, 1/0.7),
                                             sigma_beta_inter = 0.1,
                                             mu_len_inter = 7,
                                             sigma_len_inter = 0.1))
  }
  if (double_vaccines) {
    sheets$`Vaccine Doses - Observed`[date >= pause_date & date <= (pause_date + 14), dose1 := dose1 * 2]
    sheets$`Vaccine Doses - Observed`[date >= pause_date & date <= (pause_date + 14), dose2 := dose2 * 2]
    sheets$`Vaccine Doses - Observed`[date >= pause_date & date <= (pause_date + 14), doseJ := doseJ * 2]
  }
  if (low_seroprev) {
    sheets$`Parameters with Distributions`[internal.name == "frac_tested", Mean := 0.35]
  } else {
    sheets$`Parameters with Distributions`[internal.name == "frac_tested", Mean := 0.25]
  }
  sheets$Variants[name == "UK", transmisson_mult := trans_mult_UK]
  sheets$Variants[name == "UK", frac_on_day0 := cur_UK]
  sheets$Variants[name == "Wild", frac_on_day0 := 1 - cur_UK]
  sheets$Variants[name == "UK", daily_growth_prior := growth_UK]
  sheets$Variants[name == "UK", daily_growth_future := growth_UK]
  sheets$Internal[internal.name == "output.filestr", value := paste0("MI_", pause, double_vaccines, low_seroprev, trans_mult_UK, cur_UK, growth_UK)]
  inputs <- LEMMA:::ProcessSheets(sheets)
  lemma <- LEMMA:::CredibilityInterval(inputs)
  return(lemma)
}

RunScenario <- function(index) {
  with(scen[index, ], Scenario(pause, double_vaccines, low_seroprev, trans_mult_UK, cur_UK, growth_UK))
}

scen <- expand.grid(pause = c(T, F), double_vaccines = c(T, F), low_seroprev = c(T, F), trans_mult_UK = c(1.5, 1.7), cur_UK = c(0.3, 0.5, 0.7), growth_UK = c(1.02, 1.03, 1.04))
lemma_list <- mclapply(1:nrow(scen), RunScenario, mc.cores = 12)